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ABSTRACT

We examine how the fraction f of stars for which rotational modulation has been detected in Ke-

pler light curves depends on the stellar mass M? and age t?. Our sample consists of ≈ 850 FGK

stars hosting transiting planet candidates detected from the prime Kepler mission. For these stars,

atmospheric parameters have been derived using high-resolution spectra from the California-Kepler

survey, and rotational modulation has been searched in Kepler light curves homogeneously. We fit

stellar models to the atmospheric parameters, Gaia parallax, and 2MASS magnitude of these stars

and obtain samples drawn from the posterior probability distributions for their masses and ages under

a given, uninformative prior. We combine them with the result of rotational modulation search to

simultaneously infer the mass–age distribution of the sample as well as f(M?, t?), in a manner that

fully takes into account mass and age uncertainties of individual stars. We find that f remains near

unity up to t? ∼ 3 Gyr and drops to almost zero by t? ∼ 5 Gyr, although the trend is less clearly

detected for stars with . 0.9M� due to weaker age constraints. This finding is consistent with a view

that the detection of rotational modulation is limited by photometric precision to younger stars that

exhibit higher-amplitude modulation, and suggests that the detectability of rotational modulation in

Kepler light curves is insensitive to metallicity and activity cycles for stars younger than the Sun.

Keywords: Light curves (918) — Starspots (1572) — Stellar activity (1580) — Stellar magnetic fields

(1610) — Stellar rotation (1629)

1. INTRODUCTION

High precision, continuous photometry made available

by the NASA Kepler mission (Borucki et al. 2010; Koch

et al. 2010) enabled detection of rotational brightness

variations for tens of thousands of FGKM stars (e.g.

Nielsen et al. 2013; Reinhold et al. 2013; McQuillan et al.

2014; Garćıa et al. 2014; Santos et al. 2019; Reinhold &

Hekker 2020; Santos et al. 2021). While these stars have

been studied extensively, less attention has been paid to

stars without detected variations (but see Jackson &

Jeffries 2012), limiting our understanding of why some

stars exhibit detectable rotational modulation while oth-

ers do not. Obviously age must be an important factor,

because a star’s activity weakens as it ages and spins

down, and so does the amplitude of photometric rota-

tional modulation. It is unclear, though, whether age
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is the only important parameter. Long-term activity

cycles may cause some young/old stars to become occa-

sionally invisible/visible in their rotational modulation.

Metal-rich stars may have enhanced stellar variabilities

at a given rotation period because of their deeper con-

vective envelopes (e.g., Witzke et al. 2020; Amard et al.

2020; See et al. 2021).

It has been known that the distribution of rotation pe-

riods Prot derived from photometric modulation for Ke-

pler stars exhibits a rather sharp upper edge as a func-

tion of stellar effective temperature Teff (e.g., McQuillan

et al. 2014; Santos et al. 2021). McQuillan et al. (2014)

noted that the edge lies roughly on a gyrochrone of the

solar age. van Saders et al. (2019) pointed out that the

longest detected periods for stars with different spectral

types scale with their convective turnover timescales τc:

the edge lies around a Rossby number Ro = Prot/τc close

to the solar value. van Saders et al. (2019) discussed

two possible interpretations that are not mutually ex-

clusive: (i) it is a detection edge associated with mod-

ulation amplitudes decreasing with increasing rotation
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periods, where they hypothesized that the edge might

have been sharpened by a sudden drop in the amplitude

due to a change in the stellar spottedness, or (ii) stellar

spin down stalls around the solar Rossby number (An-

gus et al. 2015; van Saders et al. 2016), causing older

stars to masquerade as young in their rotational ap-

pearance (the weakened magnetic braking hypothesis).

van Saders et al. (2019) was prudent in deciding which

interpretation is more likely, although they noted that

longest-period stars around the upper edge do not show

similar variability amplitudes and argued that this fea-

ture is at odds with the simple detection edge as posited

in scenario (i).

More recently, Masuda (2022) presented evidence for

the magnitude-dependent detection threshold in the Mc-

Quillan et al. (2014) sample, which was shown to agree

with the location of the observed upper edge for main-

sequence stars: this is scenario (i) in van Saders et al.

(2019) but does not require a discontinuous drop in the

photometric modulation amplitude. The crux of this ar-

gument is that the modulation amplitude decreases very

rapidly with increasing Ro in a manner roughly indepen-

dent of Teff for solar-type main-sequence stars, and that

stars with different magnitudes have different detection

thresholds for rotational modulation. Since the Kepler

sample is dominated by the faintest stars, the combina-

tion of the two imprints a sharp Ro cutoff in the sample

of detected rotational modulation; here the cooler stars

have slightly higher thresholds for the detectable ampli-

tude because they are fainter, which explains why the

upper Prot–Teff edge does not correspond to a constant

variability amplitude. If this view is correct, the stars

should exhibit detectable rotational modulation if and

only if a star is younger than a certain age threshold that

is primarily determined by its Teff or mass (and depends

weakly on its visual magnitude): the threshold Rossby

number translates into the threshold rotation period via

the dependence of τc on Teff , which then translates into

the threshold age via gyrochronal relations.1 This pre-

diction is in contrast to what we expect assuming that

the edge is due to weakened magnetic braking (scenario

ii), in which case stars with detected rotational modu-

lation should have a broad age distribution at a fixed

mass.

In this paper, we estimate the fraction of Kepler stars

with detected rotation periods as a function of mass and

age to better understand the detection bias of photomet-

ric rotational modulation, and to test the above pre-

1 This prediction is insensitive to the weakened magnetic braking,
because most stars cross down the detection thresholds before its
likely onset (see Masuda 2022).

diction. This requires ages of the stars both with and

without detected rotational modulation. We also need

a sample of stars for which rotational modulation has

been uniformly searched. For these reasons, we focus on

the stars studied in the California-Kepler Survey (CKS;

Petigura et al. 2017). This is a sample of stars with tran-

siting planet candidates detected in the Kepler data, for

which high-resolution spectra have been obtained with

Keck/HIRES and stellar atmospheric parameters have

been uniformly derived. The information can be com-

bined with precise parallaxes from Gaia EDR3 (Gaia

Collaboration et al. 2021) and ground-based photometry

to derive isochrone-based ages. Most of these stars have

also been searched for rotational modulation by Mazeh

et al. (2015) using the same autocorrelation function

(ACF) based method as adopted in McQuillan et al.

(2014). Planetary transits were masked in the search,

and in any case affect only a small portion of the light

curve. Rather, we consider the selection conditioned on

the presence of transiting planets to be advantageous

for the present study: various surveys have shown that

stars with close-in planets are roughly 10 times less likely

to host binary companions within ∼ 10 au (see Moe &

Kratter 2021, for a summary), and so these stars are un-

likely to be tight binaries where tidal interactions may

have significantly affected the stellar rotation.2

As is well known, the age from isochrone fitting is

often highly degenerate with mass and so is uncertain

(e.g., Soderblom 2010); this remains to be the case even

in our analysis leveraging the Gaia parallax and focus-

ing on solar-mass main-sequence stars. Nevertheless,

we will show that such degenerate solutions, if prop-

erly taken into account, still provide useful information

on the underlying age distribution for a large number

of stars. In Section 2, we describe our isochrone fitting

method, and validate it using simulated and asteroseis-

mic data. Here we show typical constraints we can ob-

tain for mass and age with the current data, and discuss

limitations and caveats in interpreting such probabilis-

tic constraints as obtained from isochrone fitting. In

Section 3, we describe our sample stars and apply the

fitting method to obtain samples drawn from the poste-

rior probability distributions for their physical param-

eters including ages, also incorporating gyrochronology

information where available. We also present initial ob-

servations on how the amplitudes of rotational modula-

tion as well as their detectability depend on stellar mass,

2 Massive, close-in planets may also tidally affect the stellar rota-
tion (Tejada Arevalo et al. 2021). However, such “hot Jupiters”
exist only around ∼ 1% of Sun-like stars (Wright et al. 2012) and
so are negligible statistically.
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age, and metallicity. Section 4 describes our hierarchi-

cal Bayesian framework to infer the fraction of stars with

detected rotational modulation fully taking into account

the mass and age uncertainties. In Section 5, we apply

the method to our sample to derive how the fraction of

stars with detected modulation depends on stellar mass

and age, and show that the result is consistent with the

view that the longest detected periods are determined

by a simple detection edge. In Section 6 we summarize

and conclude the paper.

2. ISOCHRONE FITTING

Here we describe our method of isochrone fitting (Sec-

tion 2.1), and perform internal (Section 2.2) and exter-

nal (Section 2.3) tests to validate the procedure. These

tests are also used to illustrate limitations and caveats

of single-value estimates based on the Bayesian posterior

probability distribution, which motivates the hierarchi-

cal treatment in Section 4.

2.1. The Method

Essentially, we perform the fitting on the color-

magnitude diagram interpolating the MIST models

(Paxton et al. 2011, 2013, 2015; Dotter 2016; Choi et al.

2016). The physical parameters (effective temperature,

mass, radius etc.) and the magnitudes in different

photometric bands are derived by linearly interpolat-

ing model grids for a given set of age t?, iron metallic-

ity [Fe/H], and the equivalent evolutionary phase (EEP;

Dotter 2016) e. This approach is also adopted in the

isochrones package (Morton 2015).

In this paper, we feed the measurements of effective

temperature Teff , iron metallicity [Fe/H], Ks-band mag-
nitude Ks, and parallax $ as the data D, and infer the

probability density function (PDF) for the set of param-

eters θ = (t?, [Fe/H], e, d) given the data D, where d is

the distance to a star. The measurements of Teff and

[Fe/H] come from high-resolution spectroscopy; Ks is

from the Two Micron All Sky Survey (2MASS; Skrut-

skie et al. 2006); and the parallax is from Gaia EDR3.

We do not use spectroscopic surface gravity log g, be-

cause the above data usually provide much more strin-

gent constraints on stellar radii than log g. We do not

use magnitudes in other photometric bands following

Fulton & Petigura (2018): they are redundant given the

spectroscopic Teff and could make the results more sen-

sitive to interstellar extinction.

The inference requires the likelihood function L(D|θ),
the probability to obtain D for a given set of parameter

values θ. This is computed as a product of indepen-

dent Gaussians for each measured parameter:3 given the

stellar model, the observable y = (Teff , [Fe/H],Ks, $) is

computed as a deterministic function of θ as described

above (and d = 1/$), and is used to compute the like-

lihood

L(D|θ) =
∏
i

1√
2π(σobs

i )2
exp

[
−1

2

(
yobs
i − yi(θ)

σobs
i

)2
]
(1)

where yobs
i and σobs

i denote the “measured value” and

“error bar” of the parameter yi (i.e., Teff , [Fe/H], Ks,

$), respectively. We then sample from the following

joint posterior PDF of age t?, metallicity [Fe/H], EEP

e, and distance d:

p(θ|D) ∝ L(D|θ)π(θ) (2)

adopting a certain prior PDF π(θ). The prior

PDF π is assumed to be separable as π(θ) =

π0(t?, [Fe/H], e)π1(d), and π0 is chosen so that

π0(t?, [Fe/H], e) is proportional to the Jacobian

|∂(t?, [Fe/H],M?)/∂(t?, [Fe/H], e)|, i.e., the probability

density is constant in the (t?, [Fe/H],M?) space where

valid models exist.4 The age, [Fe/H], and EEP were

bounded to be within (0.1, 13.8)Gyr, (−0.5, 0.5), and

(0, 600), respectively. For the distance prior π1(d), we

adopt an exponentially decreasing volume density prior

with a length scale of 1.35 kpc (Bailer-Jones 2015; As-

traatmadja & Bailer-Jones 2016). In practice, the choice

of π1 does not play a significant role for our sample stars

whose parallaxes are well constrained. Isochrone fitting

based on a Bayesian framework is not without precedent:

earlier works include Pont & Eyer (2004); Jørgensen &

Lindegren (2005); Takeda et al. (2007); Morton (2015).

The code was implemented using JAX (Bradbury et al.

2018). The sampling was performed using Hamilto-

nian Monte Carlo and the No-U-Turn Sampler (Duane

et al. 1987; Betancourt 2017) as implemented in NumPyro

(Bingham et al. 2018; Phan et al. 2019). We typically

draw 20,000 samples, after which the resulting chains

had the split R̂ < 1.02 (Gelman et al. 2014) for all the

parameters in most cases. The tool is available through

GitHub.5

2.2. Injection and Recovery Tests

3 Here we ignore the possible correlation between Teff and [Fe/H]
that may exist when the two parameters are derived from the
same spectra. This is not a fundamental limitation to the
method.

4 This means that the marginalized prior PDFs for individual pa-
rameters are not necessarily uniform.

5 https://github.com/kemasuda/jaxstar

https://github.com/kemasuda/jaxstar
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As we will see, given the current measurement pre-

cision and non-linear nature of the function y(θ), the

posterior PDF (2) is usually non-Gaussian and broad,

and is sometimes even multi-modal. For main-sequence

stars as we will mostly focus on, the mass and age ex-

hibit a negative correlation so that they result in the

same luminosity. For these reasons, the resulting con-

straints are often not adequately summarized by a single

representative value (e.g., “best-fit” and “error”), as il-

lustrated in Figure 1. One of the main focuses of this

paper is how to appropriately interpret such probabilis-

tic constraints.

To illustrate what kind of constraints we typically ob-

tain, as well as to test the validity of our fitting proce-

dure, we perform injection and recovery tests using sim-

ulated data. We computed (Teff , [Fe/H],Ks, $) for 5,000

stars whose physical parameters were randomly drawn

from the distributions in Table 1, which are based on

the CKS sample analyzed in the following sections. The

simulated observable parameters were perturbed by the

errors shown in the table, and we feed those “measured”

values and the assumed errors into the code.

Table 1. Parameters of the Simulated Stars

Parameter Distribution Assumed Error

stellar mass M? (M�) U(0.7, 1.3) · · ·
age t? (Gyr) U(0, 13.8) · · ·
[Fe/H] N (0.03, 0.18) 0.1

log10 $ (mas) N (0.17, 0.26) $/100

Ks (mag) · · · 0.023

Teff (K) · · · 110

Note—The parameters without specified distributions
were computed in a deterministic way from the other pa-
rameters. Assumed errors show standard deviations of
Gaussians. EEP was truncated at 600. N (µ, σ) means
the normal distribution centered on µ and with variance
σ2. U(a, b) is the uniform probability density function be-
tween a and b.

Figure 1 shows examples of the resulting posterior

samples for four simulated stars along with the ground

truths. We find that masses are typically recovered

within ∼ 0.05M�. Ages are not inconsistent with the

truths in the sense that the resulting posteriors have

significant probability masses around the truths. How-

ever, the marginal distribution for the age is wide and

skewed for stars in the main-sequence. This makes sim-

ple summary statistics such as the median and symmet-

ric 68% interval less useful than for the mass, because

different statistics capture different aspects of the distri-

bution and may give very different values. The fact that

the posterior distribution is wide also suggests that such

statistics, as well as the entire posterior distribution, are

sensitive to the adopted prior.

How well does the posterior median (not) work sta-

tistically, depending on the true stellar mass and age?

Figure 2 summarizes how the recovered mass and age

are biased or not as a function of the input (true)

mass and age. Each cell contains stars with different

[Fe/H] and $, and the color corresponds to the me-

dian of the differences between the medians of the re-

covered distribution from the truths. For the whole

sample, we found Mmed
? −M true

? = 0.00± 0.05M� and

tmed
? − ttrue

? = −0.1± 2.9 Gyr (mean and standard devi-

ation); so overall the results are not systematically bi-

ased.6 However, the accuracy depends on the true mass

and age as shown in the figure. The ages are well es-

timated for super-solar mass stars in the latter halves

of their main-sequence lives, as expected; but for less

massive stars, the median posterior estimates for indi-

vidual stars are systematically biased, for the youngest

and oldest stars in each mass range. Here the posterior

PDFs are not very informative and tend to be close to

the prior PDF, and so their medians tend to be around

the middle of the prior range. This large uncertainty

in age, on the other hand, results in smaller changes in

mass. We do see a sysetmatic trend in the mass bias

that is inversely correlated with the age bias, but the

mass bias is typically less than ∼ 0.05M�.

To summarize, we show that a simple summary (such

as median) of the age posterior is of limited use for indi-

vidual sub-solar mass stars even with the Gaia parallax,

while that for mass is good to ∼ 0.05M�. In Section

4, we will show that such weak constraints, if properly

handled, are still useful for inferring the underlying age

distribution.

2.3. Tests using Kepler Seismic Stars

Also shown with the star symbols in Figure 2 are

the masses and ages of the Kepler seismic stars from

the LEGACY (Silva Aguirre et al. 2017) and KEGAS

(Silva Aguirre et al. 2015) projects; for stars in both,

the LEGACY parameters are used. Here we test our

isochrone fitting method further by applying it to these

stars with precise and accurate parameter constraints

from asteroseismology. Interestingly, they are in the re-

6 Here the simulated stars follow the same uniform mass–age distri-
bution as the adopted prior, so this agreement is not surprising.
The agreement would have been poorer if the parameter distri-
bution of the simulated stars was far from the adopted prior.
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Figure 1. Results of injection-and-recovery tests for individual stars. Typically masses are well determined, and age posteriors
are not inconsistent with the truths, but simple summary statistics such as median often miss the mark; see also Figure 2, and
Section 2.2 for details.

gions where the median posterior estimates are supposed

to perform relatively well; the right panel of Figure 2,

for example, suggests that isochronal ages for individual

stars would be good to ∼ 1 Gyr.

We applied our fitting code to these 94 stars adopting

the spectroscopic Teff and [Fe/H] as used in the semimic

analyses (Silva Aguirre et al. 2015, 2017), 2MASS Ks,

and Gaia EDR3 parallaxes. We assumed a common un-

certainty of 110K for Teff and 0.1 for [Fe/H] consider-

ing the systematics in the absolute scales. The extinc-

tion in the Ks band was corrected using Bayestar17

(Green et al. 2018), although the effect was found to

be very minor for Ks magnitudes of those nearby stars.

We found the corresponding Gaia sources using their

2MASS IDs, corrected parallax zero points following

the recipe in Lindegren et al. (2021), and inflated the
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Figure 2. Results of injection-and-recovery tests for 5,000 simulated stars. The plots show the biases in the recovered mass
(Left) and age (Right) as a function of true stellar mass and age, where the median of the marginal posterior PDF is adopted
as the “recovered” value. Each cell contains many stars with different metallicities and parallaxes. In each cell, we compute
the median of the differences between the recovered and true masses/ages and show the value with different colors indicated in
the right scales. See Section 2.2 for details. The star symbols show the ages and masses of Kepler asteroseismic stars from the
LEGACY and KEGAS projects; see Section 2.3.

Figure 3. Comparison between our isochrone parameters and seismic parameters for Kepler seismic stars. They happen to
have masses and ages for which isochrone fitting works particularly well (see also Figure 2). The vertical axes show the difference
between the median of the posterior of the isochrone fit from the seismic value. The error bars only show the 68% interval of
the isochrone fit.

parallax error using the fitting function of the Gaia

magnitude G derived by El-Badry et al. (2021). We

did not use log g from asteroseismic modeling so that

the information used here is independent from the seis-

mic analyses. We excluded stars with their inferred

(Teff , [Fe/H],Ks, $) (medians of the marginal posteri-

ors) differing from the input values by more than two

standard deviations, which indicates that an isochrone

model consistent with the observed parameters was not

found. We also excluded stars with |[Fe/H]| > 0.4 or

with seimic mass > 1.3M�; for those most metal-poor

or metal-rich stars we typically found larger mismatches

between the models and observables.

The results of our isochrone fitting are compared with

the seismic values in Figure 3, where we show the dif-

ference between the posterior medians and the reported

seismic values. The error bars are those for isochrone

fitting alone, and show the 16th/84th percentiles of the

marginal posteriors. We find the mean differences for

mass and age to be 0.00M� and 0.3 Gyr, and their
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standard deviations to be 0.04M� and 1.1 Gyr.7 This

good agreement — including that the amount of scatter

is as expected from our injection-and-recovery simula-

tions in Section 2.2 — further validates our isochrone

fitting procedure. We reiterate, though, that these seis-

mic stars happened to be the stars for which isochrone

fitting works best; age precision, in particular, would be

poorer for younger, lower-mass stars as shown in Figure

2.

2.4. Note on the Summary Statistics

In this section, we used the median and symmetric

68% interval of the marginal posterior PDF as sum-

mary statistics. Since the PDF is not Gaussian (see

Figure 1), the two values inherently miss some informa-

tion in the PDF. We chose them for illustration here,

simply because they are widely used. One could adopt

other metrics such as mean and standard deviation, or

maximum a posteriori and highest probability density

intervals. We tried them and found that none of them

is obviously closer to the truths than the others; some

work better in a certain region of the parameter space

but less well in other parts. The results as shown in Fig-

ure 2 depend on such choices and that is exactly what

we mean by simple summaries are of limited use. The

following analyses in this paper will not be based on any

such summaries but on the whole likelihood functions,

i.e., the information on how well different sets of param-

eters to be inferred fit the observed parameters (data)

for each star.

3. ISOCHRONE MODELING OF THE CKS STARS

The California-Kepler Survey (CKS; Petigura et al.

2017; Johnson et al. 2017) provided high-resolution (R ∼
55, 000) Keck/HIRES spectra as well as the spectro-

scopic parameters for > 1, 000 FGK Kepler stars with

known (candidate) transiting planets. For generic Ke-

pler stars with candidate transiting planets, Mazeh et al.

(2015) performed a homogeneous search for stellar ro-

tation periods using the auto-ACF method (McQuillan

et al. 2014) and published their search results both for

stars with and without detected rotation periods. In this

paper, we focus on the intersection of the two sam-

ples, for which rotational modulation has been uniformly

searched and atmospheric parameters have been homo-

geneously derived from high-resolution spectra.

We use Teff and [Fe/H] obtained from the SpecMatch

pipeline for 1305 CKS stars assuming Gaussian errors of

110K and 0.1 respectively (Petigura et al. 2017). The

7 For more massive stars, the isochrone-based masses were found
to agree less well. We do not deal with such stars in this paper.

stars were cross matched with Gaia EDR3 using their

2MASS IDs. We chose the stars within 10−3 arcsec and

|G −Kp| < 0.2 and found 1202 sources with measured

parallaxes.8 We corrected the parallax zero point for

each star according to the recipe given by Lindegren

et al. (2021) and inflated the parallax error using the

fitting function of G derived by El-Badry et al. (2021).

We took Ks magnitudes from 2MASS and corrected for

extinction using the dust map by Green et al. (2019).

When the errors of the Ks magnitudes were missing,

they were replaced by the median error of the sample.

Among them, there are 1054 stars for which rotation

periods have been searched by Mazeh et al. (2015).

We perform isochrone fitting for these 1,054 stars as

described below, with and without incorporating gy-

rochronal age constraints from the photometrically mea-

sured rotation periods when available. The results are

used to define two sets of samples that will be analyzed

separately in Section 5.

3.1. Isochrone-only Sample

First, we performed the isochrone fitting as described

in Section 2 and obtained posterior samples for the phys-

ical parameters of the stars including mass and age.

As we did in Section 2.3, we excluded stars whose fit-

ted (Teff , [Fe/H],Ks, $) differ from the input values by

more than two standard deviations. We also excluded 29

stars with |[Fe/H]| > 0.4 considering the test results us-

ing seismic stars in Section 2.3, as well as those with po-

tentially problematic Gaia astrometry and/or potential

binary contaminants from the sample following Masuda

et al. (2022). These criteria left us with 948 stars. We

then focus on its subset whose isochrone masses (as spec-

ified by medians of the marginal posteriors) are between

0.7–1.3M�. The final sample consists of 855 stars.9

Our results are consistent with those in Petigura et al.

(2022), who derived physical parameters of the CKS

stars in almost the same way, within typical uncertain-

ties. All of the 855 stars have been analyzed in Petigura

et al. (2022), and the differences of our posterior medi-

ans from their values (mean offset and standard devia-

tion) are 0.00 ± 0.02M� for the mass, 0.01 ± 0.03R�
for the radius, and 0.33 ± 1.33 Gyr for the age. The

origin of the slight offset in the median posterior age

is unclear. It could be attributed to the difference in

the priors adopted in the isochrone fitting. Since the

following analyses require the entire samples from the

8 We omitted KIC 3957082 for which CKS parameters were miss-
ing.

9 The summary table is available through GitHub: https://github.
com/kemasuda/acheron/tree/main/cks frot.

https://github.com/kemasuda/acheron/tree/main/cks_frot
https://github.com/kemasuda/acheron/tree/main/cks_frot
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Figure 4. Ages and masses of the CKS stars derived from (Left) isochrone fitting only and from (Right) isochrone & gyrochrone
in Section 3. Filled circles show stars for which rotational modualtion has been detected by Mazeh et al. (2015). These plots
show the medians of the marginal posteriors, which are significantly biased in a large part of the parameter space (see Figure 2).
For example, although no star appears to have ages . 2 Gyr in the left panel, many of the stars around the lower edge in fact
have large age uncertainties and are (also) consistent with ages . 2 Gyr. Therefore these plots are only for illustration; a more
careful analysis fully taking into account the age and mass uncertainties will be performed in Section 5 to derive the fraction of
stars with robust rotation periods as a function of mass and age.

posterior PDF, we will use the results from our own

isochrone fitting.

3.2. Joint Isochrone & Gyrochrone Sample

Among the 1,054 stars, robust detection of rotational

modulation has been reported by Mazeh et al. (2015) for

359 stars (34% of the sample). Here “robust” means that

the detected period is consistent in different quarters

(their flag M1), the signal is strong enough to be reliable

(M2), and has passed visual examination (R). For those

stars, we also performed isochrone fitting additionally

incorporating gyrochrone information calibrated to the

Praesepe cluster and the Sun, following the method in

Angus et al. (2019). We found that the resulting age

constraints were typically dominated by the information

from rotation periods. Using the outputs from this joint

fitting when available, the same cut as in Section 3.1

left us with 855 stars, in which 278 stars (33%) have

robustly detected rotation periods.

3.3. Masses, Ages, and Photometric Modulation

Amplitudes of Stars With and Without Robustly

Detected Rotation Periods

In Figure 4, we show “point estimates” for ages and

masses from the above analyses with and without gy-

rochronal constraints, using the medians of the marginal

posterior PDFs. The filled circles show stars for which

robust detection of rotational modulation (and hence ro-

tation period) has been reported in Mazeh et al. (2015).

In the right panel, gyrochronal information was used

in addition to the isochrone likelihood (Section 3.2) for

those stars. Both results show that rotational modula-

tion has been detected for the youngest stars, and that

the fraction of such stars rapidly decreases to almost

zero as they become older (but see also Section 4.1 for

caveats in interpreting these results based on such point

estimates and for why the two results appear to be dif-

ferent).

The simplest interpretation of this trend is that rota-

tional modulation has been missed for older stars due

to their weaker photometric variabilities. Although we

will perform more careful analyses taking into account

age and mass uncertainties in the following sections,

this is already supported by Figure 5. Here we show

how the photometric modulation amplitude Rvar as re-

ported by Mazeh et al. (2015), which is defined as the

median of the differences between the 95th and 5th per-

centiles of normalized flux in each rotation period cycle,

changes as a function of the median posterior ages for

stars with different masses. In Mazeh et al. (2015), Rvar

is assigned also for stars without robust period detec-

tion (open circles), which is based on rotation periods

that have not passed their criteria for robust detection

(See Section 3.2); the ages of these stars are thus es-

timated based on isochrone fitting alone (Section 3.1).

Figure 5 shows that robust detection is limited to stars

with larger Rvar that are younger. The Rvar–t? rela-

tion roughly follows Rvar ∝ t−2.3
? , which corresponds

to Rper ∝ P−4.6
rot derived by Masuda (2022) using the

brightest solar-mass Kepler stars from McQuillan et al.

(2014),10 assuming the Skumanich relation Prot ∼ t
1/2
? .

The good correlation between Rvar and t? we see in Fig-

ure 5 also supports that we have correctly sorted ages of

10 The modulation amplitude is denoted as Rper (rather than Rvar)
in McQuillan et al. (2014).
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Figure 5. Amplitudes of photometric modulation versus ages for stars with different mass ranges shown in the title of each
plot. Stars with robust period detection are shown with filled circles, for which ages and masses are from joint isochrone &
gyrochrone fitting (Section 3.2); otherwise the parameters are from isochrone-only fitting (Section 3.1). The ages shown here

are medians of the marginal posterior PDFs. Gray dashed lines show the scaling Rper ∝ t−2.3
? , which for Prot ∝ t1/2

? corresponds
to Rper ∝ P−4.6

rot derived in Masuda (2022) using a larger sample of Kepler stars. Thus this is not a fit to the data shown here;
see the text for details.

Figure 6. Ages and metallicities of the CKS stars. The metallicity comes from the CKS, and ages are medians of the marginal
posteriors from isohcrone-only fitting (Left) and from joint isochrone & gyrochrone fitting (Right); see Section 3. Filled circles
show stars for which rotational modulation has been detected by Mazeh et al. (2015).

these stars despite that ages of stars shown with open

circles are based on isochrone fitting alone.

Figure 5 shows that the “modulation amplitudes” of

stars with & 0.9M� appear to plateau at older ages.

Here we note that the detection of rotational modula-

tion has not been considered to be significant in Mazeh

et al. (2015) for these stars, and so it is not clear whether

this variability is indeed associated with rotational mod-

ulation. In fact, the assigned amplitudes are close to

the noise level of Kepler for these stars; so even if the

detected periods are actual rotational periods, the mod-

ulation amplitudes may have been overestimated. For

these reasons, it is not clear how the modulation ampli-

tudes evolve at these older ages.
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Could the detectable modulation be associated with

metal-rich stars rather than young stars? In Figure 6,

we show ages and metallicities for stars with and with-

out robust detection of rotation periods. The ages are

medians of the marginal posteriors as in the previous

figures, but now [Fe/H] is the value from the SpecMatch

pipeline, although the posterior constraints from the

isochrone fitting are similar to those measured values.

The plots show that the detectability of rotational mod-

ulation depends primarily on age rather than metallic-

ity: at a given age, rotational modulation has been de-

tected both for metal-rich and metal-poor stars, while

at a given metallicity detection is limited to young stars.

4. INFERRING THE AGE–MASS DISTRIBUTION

4.1. Motivation

The point estimates in Figure 4 based on isochrone

(& gyrochrone) analyses in Section 3 suggest that ro-

tational modulation has been detected if and only if a

star is young. On the other hand, the plots also show

obvious issues associated with point estimates based on

broad and skewed posterior PDFs. We saw in Figure

2 that youngest stars tended to be assigned older ages

and vice versa especially for stars less massive than the

Sun when the median of the posterior PDF is adopted,

and the lack of points in the bottom and top-left parts

of the left diagram is indeed consistent with this bias:

in other words, the posterior age PDFs for many stars

extend to these empty regions, while their medians do

not (cf. left panels in Figure 1). As we discussed in Sec-

tion 2, this implies that the constraints presented this

way are sensitive to the adopted priors for age (e.g., uni-

form or log-uniform) and what statistics (e.g., median,

mean, mode) was used to summarize the information

from the posterior.

In the right panel of Figure 4 based on the joint

isochrone & gyrochrone fitting, those stars with ro-

tation periods (i.e., filled circles) are assigned even

younger ages than in the left panel, and the tendency

of the young stars to show rotational modulation ap-

pears stronger. The “shift” in the location of those stars

shown with filled circles typically happened as follows:

in the left panel, some stars have posterior PDFs simi-

lar to the two left cases in Figure 1, and the gyrochrone

information caused the PDF to shrink toward younger

ages, decreasing both the median values and the widths

of the PDFs. Thus the stars with and without detected

rotation periods now have very different age uncertain-

ties. This difference also needs to be accounted for care-

fully: it might be the case, for example, that some of

the stars without detected periods are in fact similarly

young to those with detected periods, but are just ap-

pearing to be older due to large age uncertainties. Then

we would overestimate the fraction of filled circles at the

youngest ages.

To address these issues more carefully, we need to go

beyond the point estimates using medians (or whatever

summary statistics) of the posterior PDFs and to deal

with the whole information provided by the likelihood

function. We present a framework in Section 4.2, test it

with simulated data sets in Section 4.3, and apply it to

the CKS stars in Section 5.

4.2. Framework

We formulate the problem as a simultaneous infer-

ence of (i) the occurrence rate of stars in the mass–age

plane (i.e., joint mass–age distribution) pocc marginal-

ized over other parameters including metallicity,11 and

(ii) the probability for a given star with mass M? and

age t? to exhibit rotational modulation detectable in Ke-

pler light curves, f(M?, t?). We model the former in a

“non-parametric” way as a histogram in the mass–age

plane:

pocc(x|α) =

M∑
k=1

exp(αk) Πk(x), (3)

where x = (M?, t?), Πk is a step function (1 if x is in

the kth bin and 0 otherwise), and α is a set of param-

eters that controls the bin heights (see, e.g., Foreman-

Mackey et al. 2014, for another example). We assume

that α is normalized so that
∑

k exp(αk) ∆k = 1 with ∆k

being the area of the kth bin; therefore pocc is the prob-

ability density function and αk denotes the log proba-

bility density in the kth bin. Correspondingly, we as-

sume that f(M?, t?) is constant in each bin and esti-

mate the value of 0 ≤ fk ≤ 1 in each bin. In this pa-

per, we set up 12 bins for masses spanning 0.7–1.3M�
at 0.05M� intervals and 14 bins for ages spanning 0–

14 Gyr at 1 Gyr intervals, which results in the total bin

number of M = 168.

Stated this way, our goal is to infer α =

(α1, α2, . . . , αM ) and f = (f1, f2, . . . , fM ) using the data

for N stars. The data are (i) the observables Dj used for

isochrone fitting (and rotation period for joint fitting)

defined in Section 2.1, and (ii) the result of rotation pe-

riod search Rj by Mazeh et al. (2015), where j is a label

for individual stars in the sample. Here we assume that

Rj simply implies whether the period is detected (1) or

11 Here we are implicitly assuming that the joint distribution for
M?, t?, [Fe/H], and distance is separable into that for (M?, t?)
and that for the other parameters. See Section 4.3.4 for the
caveats associated with this assumption.
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not (0) for a given star. We wish to sample from

p(α, f, ε|D,R) ∝ p(D,R|α, f)$(α, f, ε), (4)

where p(D,R|α, f) is the likelihood function, i.e., the

probability to obtain the whole data D = {Dj}Nj=1 and

R = {Rj}Nj=1 for given α and f , and $(α, f, ε) is the

prior PDF for α, f , and the parameter ε that encodes

the expected smoothness of pocc (see below).

The likelihood is separable as

p(D,R|α, f) =

N∏
j=1

p(Dj , Rj |α, f), (5)

and we need to compute

p(Dj , Rj |α, f) =

∫
p(Dj , Rj , xj |α, f) dxj

=

∫
p(Dj , Rj |xj , α, f) p(xj |α, f) dxj (6)

for each star. In p(xj |α, f) above, the PDF for xj does

not depend on f when conditioned on α, and so this is

equivalent to pocc(xj |α) defined in Equation 3. Because

the data Dj and Rj are independent, we also have

p(Dj , Rj |xj , α, f) = p(Dj |xj , α, f) p(Rj |xj , α, f)

= p(Dj |xj) p(Rj |xj , f), (7)

where by definition of R

p(Rj |xj , f) =

M∑
k=1

f
Rj

k (1− fk)1−RjΠk(xj). (8)

The above p(Rj |xj , f) reduces to fk forRj = 1 and 1−fk
for Rj = 0, where k is the index of the bin that xj falls

in. Then the likelihood for the jth star (Equation 6) is

p(Dj , Rj |α, f) =

M∑
k=1

f
Rj

k (1− fk)1−Rj exp(αk)Ljk,

Ljk ≡
∫
p(Dj |xj) Πk(xj) dxj (9)

where we have used Πk(x)Πk′(x) = δkk′Πk(x) with δkk′

being the Kronecker delta. We follow Hogg et al. (2010)

to evaluate Ljk using the samples from the posterior

π(xj |Dj) conditioned on a certain uninformative prior

π(x), which we already obtained in Section 3 for indi-

vidual stars. Since

p(Dj |xj) =
π(xj |Dj)π(Dj)

π(xj)
, (10)

Ljk may be evaluated as

Ljk = π(Dj)

∫
Πk(xj)

π(xj)
π(xj |Dj) dxj

≈ π(Dj)
1

K

K∑
n=1

Πk(x
(n)
j )

π(x
(n)
j )

, x
(n)
j ∼ π(xj |Dj) (11)

with K being the number of posterior samples used.

Here the constant π(Dj) is irrelevant to the inference.

In Section 3 we adopted the prior π(x) = const., so Ljk is

proportional to the number of posterior samples xj that

falls in kth bin. Although here we use the posterior sam-

ples drawn from π(xj |Dj), the integral in Equation 11

does not explicitly depend on the choice of the prior

π(xj), because it only involves π(x|D)/π(x) ∝ p(D|x)

(i.e., likelihood function) that is a function of the data

alone.

We choose the prior $(α, f, ε) = $(α, f |ε)$(ε) as

follows:

$(α, f |ε) ∝ δ

(
M∑
k=1

exp(αk)∆k − 1

)

× 1

ε(N−1)/2
exp

− ε
2

∑
k,k′neighbors

(αk − αk′)2


×

M∏
k=1

[U(fk; 0, 1) · U(αk;−10, αmax) ] ,

(12)

where the sum in the second row is computed for all

neighboring bins, and U(x; a, b) denotes the uniform dis-

tribution for x between a and b. Here the first delta

function ensures the normalization of pocc(x|α), and the

third term represents uniform priors for f and α, where

αmax is chosen so that the normalized pocc(x|α) is posi-

tive. The second term encodes the expected smoothness

of pocc by penalizing solutions with large differences of α

in neighboring bins, unless significantly favored by the

likelihood p(D,R|α, f). The parameter ε controls the

balance between the two, and was also inferred from the

data by choosing $(ε) to be a log-uniform distribution

between exp(−5) and exp(5). Note that here we impose

the smoothness for pocc alone, and do not assume how

the values of fk in different bins might be related a pri-

ori. Given the value of pocc(M?, t?), f(M?, t?) is inferred

purely from the binomial statistics (see Equation 8), but

the above framework takes into account the uncertain-

ties in pocc that is inferred from the likelihood function

for the masses and ages of individual stars.

4.3. Tests using Simulated Data Sets

We test the framework in Section 4.2 using the re-

sults of injection-and-recovery tests in Section 2. To do

so, we pick up 850 stars (close to the CKS sample size)

from 5, 000 simulated stars so that they follow several

different mass–age distributions as described below, per-

form the hierarchical inference using the posterior sam-

ples obtained by fitting those simulated measurements,

and compare the inferred distribution with the ground
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truths. Here we ignore the data Rj and infer only α

and ε: we test whether pocc can be inferred correctly,

because once this is done the inference of f relies simply

on the binomial distribution (Equation 8).

In choosing the subsamples, we use only the stars that

satisfy

t?(Gyr) < −30(M?/M� − 1.25) + 5, (13)

above which few simulated stars exist due to our EEP

cut at 600 (see Table 1). We fixed αk = −10 (i.e., es-

sentially zero probability density) for the bins falling

in this region (i.e., we incorporate the prior knowledge

that the stars do not exist in this region). We also drop

stars falling outside the assumed mass (0.7–1.3M�) and

age (0–14 Gyr) ranges. By this we are implicitly assum-

ing that the target stars are known a priori to fall in

a certain mass range. Practically this is not a problem,

because the masses can be estimated reasonably well via

isochrone fitting, as we saw in Section 2.

4.3.1. Nearly Uniform Mass–age Distribution

We first select a subsample drawn from a uniform

distribution in the mass–age plane that satisfies Equa-

tion 13. Because of this cut, the marginal distributions

for mass and age are not uniform.

The recovered mass–age distributions (posterior mean

of exp(αk) in each bin) are compared with the ground

truths in Figure 7. The top left panel shows the mean

ppred of the posterior distribution for pocc in each bin,

which agrees well with the true probability density ptrue

in the top right panel. We find (ppred − ptrue)/σpred =

0.3± 0.3 as the mean and standard deviation of the val-

ues in all the bins, where σpred is the standard deviation

of the pocc posterior in each bin. Also shown are the

marginal distributions for mass (bottom left) and age

(bottom right). Here the orange line and shading show

the mean and standard deviation of the recovered dis-

tribution, the gray dashed line shows the ground truth,

and the blue thin line shows the histogram of medians of

the marginal posteriors (i.e., point estimates as shown in

Figure 4) for comparison. Both our inference and poste-

rior medians work well for the mass distribution, because

this parameter is well-constrained from the isochrone

analysis (cf. Section 2). For ages, on the other hand,

the hierarchical inference performs better than simply

making a histogram of the medians of the marginal pos-

teriors; the latter are clustered around the middle of the

prior range, due to the bias shown in Figure 2.

4.3.2. Nearly Gaussian Distribution

Next we test the case where the masses and ages are

clustered around certain values, although we might not

expect such a sharp concentration in the real sample.

We draw stars from independent Gaussians for mass and

age: M?/M� ∼ N (1.05, 0.1) and t?/Gyr ∼ N (7, 1.5),

again dropping stars older than given by Equation 13.

The results in Figure 8 show that the hierarchical in-

ference works reasonably well in this case as well, with

(ppred−ptrue)/σpred = 0.1±0.7. We note that the simu-

lated mass and age are around the region where the me-

dians of the posteriors work best (Figure 2). Neverthe-

less, the histogram of the median ages (blue dashed) is

significantly flatter than the truth (gray dashed) due to

wide and skewed marginal posteriors; they are “blurred”

due to large uncertainties. The hierarchical inference

(orange solid and shaded region) better reproduces the

actual sharper peak, because it correctly takes into ac-

count this blurring and provide a “deconvolved” distri-

bution.

4.3.3. Young and Old Low-mass Stars

As shown in Section 2 and Figure 2, age estimation

with isochrone fitting is most challenging for youngest

and oldest low-mass stars. Here we test these cases by

drawing masses from M?/M� ∼ N (0.8, 0.2), and ages

from t?/Gyr ∼ N (4, 2) or t?/Gyr ∼ N (10, 2). The re-

sults are shown in Figures 9 and 10, respectively. We

find (ppred−ptrue)/σpred = 0.0±0.5 for the younger stars

(Figure 9), and (ppred−ptrue)/σpred = −0.1±0.8 for the

older stars (Figure 10).

These cases most clearly illustrate the advantage of

the inference based on the entire likelihood functions.

The age histograms based on medians of the posteriors

(blue dashed lines) in Figures 9 and 10 are both far from

the truths and even similar to each other despite the very

different underlying age distributions. This is because

ages are not well constrained and the posteriors tend to

be flat (as is the prior), resulting in their medians closer

to the middle of the allowed range (see Section 2 and

Figure 2). The hierarchical framework exploits the sub-

tle but meaningful information in the entire likelihood

function and correctly detects the difference in the true

age distributions.

4.3.4. Summary and Caveats

We have shown that the framework works reasonably

well for smooth distributions as assumed above. The

result captures the underlying distribution better than

the point estimates, and the width of the posterior dis-

tributions provide a useful measure for the uncertainties

in our inference in that the deviations from the truths

are roughly one standard deviation of the prediction.

We do not claim, though, that this framework works

for any distribution. If the true distribution has sharp

discontinuities, for example, it is difficult for the model
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Figure 7. Test results for the uniform mass–age distribution in Section 4.3.1. (Top-left) The mean of the posterior PDF for
pocc as a function of mass and age. (Top-right) The true distribution that was used to simulate the sample. (Bottom-left)
Marginal distribution for stellar mass. The orange line and shading show the mean and standard deviation of the prediction.
The gray dashed histogram shows the ground truth (i.e., top right panel). The blue dashed histogram shows the distribution of
the medians of marginal mass posterior in the sample. (Bottom-right) Same as the bottom left, but for age.

Figure 8. Test results for the Gaussian distribution in Section 4.3.2. See the caption of Figure 7.
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Figure 9. Test results for the young low-mass stars (Section 4.3.3). See the caption of Figure 7.

Figure 10. Test results for the old low-mass stars (Section 4.3.3). See the caption of Figure 7.



Ages of the CKS Stars (Understanding the McQuillan Sample II) 15

to capture such features because the prior in Equation 12

assumes that pocc is smooth: the prediction will thus

be more blurred compared to the truth. We do not

believe this is the case in the real sample analyzed in

Section 5, but our framework cannot prove this. This is

a limitation of this work.

Another important caveat is that we have implic-

itly assumed that the prior is separable: we have as-

sumed that the mass–age distribution is independent

from metallicity. This is not true in general, and the

masses and ages of stars are likely correlated with their

metallicities and distances. We do not believe this as-

sumption significantly affects our conclusion: we re-

peated the same analyses splitting the samples into

metal-rich and metal-poor stars and found the same

trends, although the constraints in each population be-

came weaker due to smaller sample sizes. This limitation

is not inherent in the formulation; one could in princi-

ple infer the joint mass–age–metallicity distribution, or

more practically infer the mass–age distribution for sep-

arate subsets of stars with almost the same metallicity

if the sample is large enough.

5. FRACTION OF THE CKS STARS WITH

DETECTED ROTATIONAL MODULATION AS

A FUNCTION OF MASS AND AGE

We apply the method described in Section 4 to two

sets of posterior samples for the CKS stars derived in

Section 3, with and without gyrochronology informa-

tion. Here we use the same mass/age bins and age cut

as adopted in Section 4, but now we use the results of

rotational modulation search R and infer the fraction of

stars with detected modulation f simultaneously with

α.

Figure 11 shows the age–mass distribution inferred

from the isochrone-only posterior samples (left column)

and from the samples incorporating gyrochrone infor-

mation when available (right column). In Figure 4, we

saw that gyrochronology generally provides more pre-

cise constraints for ages of young stars, thereby mak-

ing the distribution of median ages very different in

the lower-left part of the diagram. Nevertheless, Fig-

ure 11 shows that the samples with and without gy-

rochrone information imply similar age–mass distribu-

tions (top panel), including their marginalized distribu-

tions (middle and bottom panels). This agreement sug-

gests that our framework is working properly: although

the isohcrone-only fit provides weaker constraints for

individual stars than the joint fit, the former results

contain similar information about the population-level

distribution that has been successfully retrieved by our

hierarchical inference.

Figures 12 and 13 show the fraction of stars with ro-

bust detection of rotation periods (fk) that was inferred

simultaneously with the age–mass distribution in Fig-

ure 11, with and without gyrochrone information, re-

spectively. Here we show the posterior probability dis-

tribution for f as the vertical filled “violins” as a func-

tion of age for different mass ranges shown in the title

of each subplot, combining the information from two

0.05M� mass bins for clarity. The widths of the violins

correspond to the values of the PDFs. The filled circles

and vertical error bars show the peak and 68% highest

density interval of each distribution, although we note

that the “peak” is not very well defined from a finite

number of samples drawn from the distribution and that

these representations are not very informative when f

is not well constrained by the data.12 The horizontal

short gray dashed lines show the means of the distri-

bution that are better defined. Again, both results are

consistent with each other, and show that f is consistent

with unity at younger ages and drops rapidly to zero by

t? ∼ 5 Gyr. The trend is most clearly seen in the nearly

solar-mass stars, presumably because the isochrone con-

strains their ages relatively well (Figure 2), and because

the sample covers a sufficiently wide range of ages. The

transition from f ∼ 1 to f ∼ 0 is not clearly seen for

the lowest-mass stars in the sample, although the result

does suggest that f decreases with age. We also see a

hint that f might increase again once the star evolves

off the main sequence, but the constraint on f is weak

and the significance is modest due to a small number

of evolved stars with detected rotation periods in the

sample (see Figure 4). This trend, if real, could be due

to the decrease of the Rossby number associated with

the thickening of the convective envelopes (cf. Lehtinen

et al. 2020). The Santos et al. (2021) catalog that pro-

vides more rotation periods for evolved stars may be

useful to shed further light on this possibility.

Overall, the results in Figures 12 and 13 support our

tentative conclusion in Section 3, as well as the predic-

tion by Masuda (2022), that the rotational modulation

is detected if and only if a star is young and the pho-

tometric modulation amplitude is large. Unlike in Sec-

12 Here we note that the filled circles and error bars cannot be in-
terpreted in the same way as the intervals defined for the Gaus-
sian distribution, since the posterior PDFs for f are far from the
Gaussian. For example, f = 1 is above the circle by two units
of the error bar for the 2.5 Gyr old stars with 0.8M� in the top
left panel of Figure 12, but f ∼ 1 is in fact almost equally plau-
sible with smaller values as the PDF is almost flat over [0, 1]. In
this case, the value of f is simply not well constrained. This is
exactly the reason why we show the entire PDFs in Figures 12
and 13, rather than their simple summary statistics. The latter
alone can be misleading in this case.
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Figure 11. Age–mass distribution for isochrone-only sample defined in Section 3.1 (left column) and joint isochrone & gy-
rochrone sample defined in Section 3.2 (right column). From top to bottom, the two-dimensional age–mass distribution (mean
of the posterior), marginalized mass distribution (mean and standard deviation), and marginalized age distribution (mean and
standard deviation) are shown.

tion 3, though, here we performed the analysis that fully

incorporates the mass and age uncertainties associated

with isochrone fitting. The tan thick dashed lines in Fig-

ures 12 and 13 show the expected fraction of stars with

rotation periods based on a simple detection model pre-

sented in Masuda (2022): here we (i) compute expected

rotational modulation amplitude as a function of Prot

and stellar mass using the Rper–Prot relation derived

from the brightest Kepler stars, (ii) compute the frac-

tion of stars f in the sample for which the modulation

would be detectable as a function of Prot, assuming that

the detection threshold is three times the long-cadence

photometric precision of Kepler, and (iii) convert the

above f(Prot) into f(t?) using the gyrochrone calibrated

to the Praesepe cluster and the Sun by Angus et al.

(2019). Although this is a simplified detection model,

the prediction is consistent with the inferred fraction,

thus further supporting this view. We note that the

detection model in Masuda (2022) is based on main-

sequence stars and by construction does not take into

account the possible enhancement of activity in evolved

stars as mentioned in the previous paragraph.

Here the model of f does not take into account the

weakened magnetic braking when converting Prot to t?,

but the prediction is in any case insensitive to the late-

time spin evolution for stars with & 1M� because f is

already nearly zero when Ro ∼ Ro�. This implies that

the available photometric data provide little information

on how the modulation amplitude of solar-mass stars

evolves at Ro & Ro�. On the other hand, we find that
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Figure 12. Fraction f of stars with detected rotational modulation as a function of mass and age, for the isochrone-only
sample in Section 3.1. The filled vertical shaded region (violins) shows the posterior PDF for f in each age–mass bin, where
the results from two mass bins are combined here. The blue circles and vertical error bars show the peaks and 68% highest
density intervals of these PDFs, and the short horizontal gray dashed lines show their means. The tan dasehd line shows the
f–t? relation predicted by the simple detection model; see text in Section 5.

Figure 13. Same as Figure 12, but for the joint isochrone & gyrochrone sample defined in Section 3.2.
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the weakened magnetic braking may affect the late-time

evolution of f for stars with . 0.9M� depending on

how the modulation amplitude evolves at Ro & Ro�,

although the presence of the weakened magnetic braking

is less well established for those sub-solar mass stars.

Thus the value of f could be useful to study how their

rotation periods and modulation amplitudes evolve at

older ages.

At least for nearly solar-mass stars, f is nearly unity

when the star is young. This implies that, as long as

the star is young and active, the detectability of rota-

tional modulation in the Kepler data is insensitive to

long-/short-term changes in the spot-modulation ampli-

tudes due to activity cycles and/or spot evolution, and

to the dependecne of spot modulation amplitude on sur-

face metallicity (see also Section 3.3).

Recently, David et al. (2022) reported the presence

of a pile-up around the upper edge of the Prot–Teff dis-

tribution combining the McQuillan et al. (2014) sample

and Teff from spectroscopic surveys, and argued that

this pile-up — as predicted by van Saders et al. (2019)

— provides further evidence for the weakened magnetic

braking. Our conclusion that the upper edge is due to

detection bias may appear to be in conflict with the re-

ported pile-up, but it is not. The pile-up they detected

is located at shorter Prot than the detection edge, and

such a pile-up results as long as the Prot distribution in-

creases toward longer periods across the detection edge,

as shown in Masuda (2022): this is what we generally ex-

pect from the Skumanich law Prot ∼ t1/2
? and a roughly

flat age distribution, as we have inferred. Thus the pile-

up itself is consistent with the simple detection edge,

although the detailed shape of the pile-up may also pro-

vide information on the spin distribution in this region

(see Section 4 of Masuda (2022) for a more detailed dis-

cussion). David et al. (2022) also pointed out that stars

hotter than the Sun (with Teff ∼ 5800–6400 K) around

the pile-up may have a somewhat broad age distribution

spanning 2–6 Gyr. This might appear to favor the weak-

ened magnetic braking origin for the upper edge, but

this is not necessarily the case. Stars with different ap-

parent magnitudes have different detection thresholds,

and so a certain amount of age scatter is naturally ex-

pected for stars around the detection edge. Considering

that the age uncertainty of at least ∼ 1 Gyr contributes

to this scatter, as they also note, the age range they

report is indeed compatible with our finding that f of

≈ 1.1M� stars (corresponding to the Teff range above)

drops from ∼ 1 to ∼ 0 at ages spanning 3–5 Gyr (top-

right panels in Figures 12 and 13).

Below we comment on potential subtleties in inter-

preting these results and argue that they do not affect

our main conclusion.

5.1. Systematics in Stellar Models

We adopted the MIST models in our analysis and did

not examine the dependence of the results on stellar

models. Tayar et al. (2022) showed that such model-

dependent offsets are typically ∼ 5% in mass and ∼ 20%

in age for main-sequence and sub-giant stars. Our con-

clusions are based on the arguments less precise than

these potential systematic effects.

We also reiterate that we find a good agreement be-

tween our isochrone ages and those from asteroseismol-

ogy for older stars with & 0.9M� (Section 2.3). For

younger stars, we found consistent age distributions with

and without gyrochronal constraints, thus statistically

validating the isochronal age scale. A good correlation

found between photometric amplitude and age presented

in Section 3.3 also supports the accuracy of relative ages.

We note that most of our main conclusions, except for

quantitative comparison with the detection model, rely

only on relative ages.

5.2. Systematics in Effective Temperatures

For young T Tauri stars, there is evidence that Teff

from optical spectra could be biased by a few 100 K due

to large spots on the surface (e.g., Flores et al. 2022).

The youngest stars in our sample are a few 100 Myr

old, at which ages typical photometric modulation am-

plitudes are smaller roughly by an order of magnitude

(e.g., Morris 2020). Therefore we argue that the system-

atics in Teff is likely smaller than our assigned error of

∼ 100 K even for the youngest stars in the sample.

6. SUMMARY AND CONCLUSION

We performed a probabilistic inference for the masses

and ages of FKG stars in the CKS sample by fitting stel-

lar models to their atmospheric parameters from high-

resolution spectra, Gaia EDR3 parallax, and Ks mag-

nitudes from 2MASS (Section 3). We presented inter-

nal and external tests to validate the procedure, and

discussed caveats in interpreting such probabilistic con-

straints as obtained in a Bayesian manner (Section 2).

We then presented a framework to infer the occurrence

rate of a certain property of stars as a function of their

masses and ages, leveraging imprecise but statistically

well-defined constraints on those parameters as are typ-

ically available from isochrone fitting (Section 4). We

applied the framework to derive the fraction f of stars

exhibiting detectable rotational modulation in the Ke-

pler data, focusing on the subset of the CKS stars for
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which rotational modulation has been searched homo-

geneously by Mazeh et al. (2015). For nearly solar-mass

stars, we found that f is near unity at t? . 3 Gyr and

drops rapidly to zero by t? ∼ 5 Gyr, although the trend

is less clear for lower-mass stars (Section 5). We also

showed that photometric modulation amplitudes of the

sample stars older than ∼ 2 Gyr decrease monotonically

with age, and that the age cuts found above correspond

to the amplitude cuts (Section 3.3).

These findings are consistent with a view that the de-

tection is simply limited by photometric precision to

younger stars that exhibit rotational modulation with

larger amplitudes, as proposed by Masuda (2022). This

argues against the hypothesis that the longest detected

rotation periods are determined by the weakened mag-

netic braking, in which case the rotational modulation

should have been detected for stars with a wide range

of ages at a given mass. Rather, the photometric sam-

ple provides limited information on the rotational evo-

lution of solar-mass stars in the latter halves of their

lives, for which weakened magnetic braking has been

considered to be important. Although our analysis is

conditioned on the periodicity search by Mazeh et al.

(2015) focusing on ≈ 3, 000 Kepler stars with transiting

planet candidates, we find evidence that the detection

function is similar to that in the sample of McQuillan

et al. (2014) who searched rotation modulation with the

same method but for generic (& 100, 000) Kepler stars

(see Section 6.1 below). Our analyses also suggest that

the detectability of rotational modulation is insensitive

to the parameters other than the age, such as metallicity

and activity cycles, at least in the Kepler photometric

data for stars younger than the Sun.

The results in this paper, as well as those in Ma-

suda (2022), consistently indicate that the distribution

of photometrically determined rotation periods of solar-

mass stars older than a few Gyr is significantly affected

by the detection bias, even in the Kepler prime mission

sample. The rapid decrease of rotational modulation

amplitude with increasing Rossby number or rotation

period (Masuda 2022) suggests that it is difficult to ob-

tain a nearly unbiased sample of photometric rotation

periods for those stars in the near future. Thus it is cru-

cial to explicitly model the detection bias in any attempt

to quantitatively interpret the available photometric ro-

tation period distribution of older Sun-like stars, such

as the derivation of the critical Rossby number for the

onset of weakened magnetic braking (e.g., van Saders

et al. 2019; David et al. 2022). Other probes of rotation

that are applicable to older stars and are subject to dif-

ferent detection biases, such as asteroseismology (Hall

et al. 2021) and v sin i (Masuda et al. 2022), will also

remain important for the study of their spin evolution.

For Sun-like stars younger than a few Gyr, on the other

hand, our results suggest that the Kepler sample pro-

vides a relatively unbiased view on their rotation period

distribution, as long as an appropriate magnitude cut is

applied to the sample.

6.1. How General Is the Result?

In this paper, we focused on the detectability of ro-

tational modulation in the Mazeh et al. (2015) sample,

who searched rotational modulation for a subset of Ke-

pler stars with transiting planet candidates. However,

the method used is the same as the one adopted by Mc-

Quillan et al. (2014) who searched rotational modulation

in generic Kepler stars and determined rotation periods

for ≈ 34, 000 of them. Therefore the conclusions in this

paper likely apply to the McQuillan et al. (2014) sample

as well.

Of course, the samples of stars for which rotational

modulation has been searched in the two works (i.e.,

stars with and without transiting planets) may well

have different properties, including the distributions of

rotation periods and modulation amplitudes (see, e.g.,

Mazeh et al. 2015). Nevertheless, what we focus on here

is the detectability of the modulation from a star with

the given mass and age, and so the intrinsic differences

in the stellar populations do not matter as long as the

period detections in the two samples are subject to the

same detectability thresholds as a function of signal to

noise.

To check on the possible difference in the detection

functions, in the top panel of Figure 14 we check the dis-

tributions of photometric modulation amplitudes nor-

malized by the long-cadence photometric precision of

Kepler as a function of Teff , for the stars with detected

rotation periods in the samples of Mazeh et al. (2015)

and McQuillan et al. (2014). For the former, we adopt

the CKS–Mazeh sample defined in this study and Teff

is from the CKS; for the latter, we show the subset of

the McQuillan et al. (2014) sample with LAMOST Teff ,

as defined in Masuda (2022). We see that both sam-

ples are truncated around the normalized amplitude of

∼ 3 without strong dependence on Teff , suggesting that

both samples are subject to similar detectability thresh-

olds (see also Masuda 2022). In the bottom panel, we

show the normalized cumulative distribution functions

for the noise-normalized modulation amplitudes. The

plot shows that the distributions are not exactly the

same in the two samples, but the normalized ampli-

tudes at lower percentiles (e.g., lower than the 20th)

agree within 20%. Thus we conclude that the detection

thresholds in the two samples are not significantly dif-
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Figure 14. (Top) Spot-modulation amplitudes normalized
by Kepler photometric precision and Teff of stars for which
rotational modulation has been detected in the searches by
Mazeh et al. (2015) (open orange circles) and by McQuillan
et al. (2014) (gray dots); see text for details of the samples.
(Bottom) Normalized cumulative distributions for the nor-
malized modulation amplitudes in the two samples shown in
the top panel.

ferent as to affect f(M?, t?) inferred in this work: the

20% change in the amplitude corresponds to only 10%

difference in age, given Rper ∼ t−2
? (see Section 3.3).

The data and the code underlying this article are

available through GitHub.13 Posterior samples from

isochrone fitting for the sample stars are available from

the author upon request.
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